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SUMMARY 
The Karhunen-Loeve procedure is applied to the analysis of an ensemble of snapshots obtained from a 
conditionally sampled localized shear layer simulation. The computed set of optimal basis functions is used 
to economically characterize sampled flow realizations. Pictorially it is seen that the essential features (and 
roughly 80% of the energy) of typical flows are captkred by retaining roughly 10-20 parameters in the 
expansion. Smaller-scale features are resolved by retaining more terms in the series. 
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1. INTRODUCTION 

The existence of coherent motions in fluid flows rich in complex behaviour is by now well 
established. For a comprehensive review article on organized motion in turbulence, see 
Cantwell.’ In principal, an ability to extract the structure of a flow and incorporate it into its 
description should reduce the parametrization, or the amount of information, needed to quantify 
the flow. In this study we apply a statistical procedure, which has been widely used in the study of 
turbulent flows, for the extraction of structure in a supersonic shear layer. As outlined below, the 
approach provides a concrete mathematical framework in which to discuss the high-energy 
components of the flow and may potentially lead to a reduced dynamical model. 

The analytical methods are based on Lumley’s proper orthogonal d e c o m p ~ s i t i o n ~ - ~  (referred 
to in pattern theory as the Karhunen-Loeve (K-L) expansion and in the statistical literature as 
principal component analysis). The procedure is useful for systematically and efficiently charac- 
terizing an ensemble of inhomogeneous patterns which possess a high degree of organized 
structure. Lumley proposed the proper orthogonal decomposition as an objective method for 
determining coherent structures. However, the connection between the eigenfunctions derived by 
the decomposition and the coherent structures observed in simulations and experiments is still 
unclear. For a more detailed discussion of these and other points see References 5 and 6. 

The method provides a low-dimensional representation of a characteristic large-scale structure 
by decomposing it into a set of uncorrelated, data-dependent components. The components are 
the eigenfunctions of a two-point correlation tensor and the expansion is optimal in several senses. 
For instance, the K-L eigenfunctions minimize the mean square error and maximize the total 
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energy captured in each co-ordinate direction, subject to orthogonality constraints. Also, while 
the method is optimal with respect to second-order moments, there is no loss of higher-order 
moment information since the eigenfunctions form a complete basis. However, the efficiency with 
which higher-order information is captured is not prescribed by any optimality condition. There 
exist many references for the details of the properties of the K-L expansion, e.g. References 7-13. 

The object of this paper is not to enter into the somewhat controversial deliberations as to 
definitions and methods for the eduction of coherent s t r u c t ~ r e s . ' ~ ~ ~ ~  With this in mind we will 
take the following utilitarian view: structures which satisfy a well-defined sampling condition will 
be treated as the objectively selected large-scale phenomenon of interest. This approach has been 
applied in two other investigations, similar in spirit, to extract large-scale structures in an experi- 
mental and numerical jet f l ~ w . ' ~ ' ' ~  For the flow under cornsideration, a large-eddy simulation of 
a localized supersonic shear layer, the structures of interest are clearly identifiable; they consist of 
two dynamic shocks whose position and strength vary in time, bounding a central high-pressure 
region. A detailed description of the flow for a range of Mach numbers is available in 
Reference 18. The sampling condition used to generate an ensemble of flow realizations is 
described in Section 3. 

It is well known that the methods suggested here require a great deal of data to provide 
sufficient statistics for the computation of the eigenfunctions. This problem can be mitigated in 
part by exploiting the symmetry group of the flow and consequently extending the data. For the 
current problem this extension cuts the expense of the computations in half. In addition, the 
extension imposes evenness and oddness on the eigenfunctions of the two-point correlation 
tensor, a fact which provides further characterization of the flow. 

This framework allows the characterization and data-compressed representation of a flow in 
terms of a fixed set of symmetric eigenjows. While these eigenflows are not in general solutions 
of the flow equations, they can clearly be viewed as corresponding to mechanical motions 
and as such provide insight into the relative make up of each flow realization in terms of its 
eigenstructure. When the flow is decomposed in this manner, pictorially we see that its 
large-scale features are captured using a small number of eigenfunctions. 

2. NUMERICAL SIMULATION 

2.1. Flow description 

Two parallel supersonic streams of equal and opposite velocity are separated by a thin plate 
with a slot in the centre. The velocity of the opposing flows is 530 m s-', corresponding to a free 
stream Mach number of 1.6. Two sample flow realizations are shown in Figure 1. The gap, which 
horizontally spans 50% of the flow, creates a region of interaction between the two opposing 
streams. As the flow bends around the plate it collides with the oncoming stream, forming a 
shock. The 180" rotational symmetry of the geometry and boundary conditions results in roughly 
symmetrical features to the flow. The pair of shocks bound a central region of high pressure which 
contains a time-varying quantity of circulation. Also, there is a region of rarefaction and vorticity 
between each plate and the deflected stream. The long-term dynamics of the flow consists of 
breathing, i.e. variation in the distance between the two shocks (in the plane of the slot), and 
sloshing, i.e. overall lateral movement of the centre of the coherent structure. In addition there is 
the gradual accumulation and shedding of vorticity from the shear layer. 

Preliminary investigations of a 3D simulation for this flow, at the same resolution, indicate that 
it is dominated by 2D effects, with 3D disturbances decaying in time. However, at this stage it is 
unclear what effect increasing the resolution will have on the simulation. 
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Figure 1. (a) Instantaneous streamlines of a typical flow realization. (b) Pressure field for realization (a). 
(c) Instantaneous streamlines of a second flow realization. (d) Pressure field for realization (c) 

2.2. Numerical model 

The numerical simulation, detailed in Reference 19, solves the time-dependent compressible 
conservation equations for a polytropic gas: 

aP a 
- + - ( p u j ) = o ,  
at axj 

a a ap  
- (pu, )  + - ( P U i U j )  + - =o, 
at axj ax, 

The equation of state is 
P 

E =  ~ ++pu:,  
Y - 1  

where E,  P ,  y ,  p and u denote the internal energy, pressure, ratio of specific heats, density and 
velocity respectively. The flow is assumed to be inviscid and non-heat-conducting. 

Two-dimensional solutions are constructed using direction splitting and time step splitting 
with a one-dimensional, fourth-order, phase-accurate flux-corrected transport (FCT) algorithm. 
FCT is an efficient, non-linear monotone method which incorporates, at least qualitatively, most 
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of the local and global effects of the unresolved turbulence expected of a large-eddy simulation.' 
The computations are carried out at standard temperature and pressure on a 120 by 80 grid; thus 
a typical realization consists of O( lo4) points. The upper and lower boundaries are free, while the 
inflow and outflow velocities are fixed on the appropriate vertical boundaries. The outflow 
boundary conditions are continuity conditions developed for such 

3. PRELIMINARIES: SAMPLING, SYMMETRY AND FLUCTUATIONS 

We apply the analysis to three two-dimensional flow variables generated by the numerical 
simulation, i.e. the pressure p and the horizontal and vertical momentum densities p u  and pu. For 
convenience we will consider the flow variables to be scalar functions of x = ( x ,  y ) .  We omit the 
density from our analysis since in this problem it behaves in a manner analogous to the pressure 
field. 

In order to obtain independent events we select only realizations, or sflapshots, that satisfy a 
predetermined strobe condition. We choose as this strobe criterion the condition that the distance 
of either shock from the centre of the slot, in the plane of the plate, is a passing maximum. This 
allows us to include only large-scale structures which are approximately in the same stage of 
development, roughly eliminating time dependence from the problem. One could also view this 
procedure as a reduction of the space of admissible solutions. In doing this we do not reduce the 
generality of the approach, since intermediate strobe conditions can be sampled and the 
individual analyses then viewed as a whole. Indeed, this approach is necessary to derive evolution 
properties of the system and its decimated expansion. 

As mentioned earlier, flow symmetry can be exploited to reduce the computational expense of 
the simulation. It is a simple task to verify that if 

( P U ( X ?  Y) ,  P U ( X 7  Y ) ,  P(X, Y ) )  

( - P U ( - X ,  -y),  - P O ( - %  -Y) ,  P ( - X ,  - J J ) ) .  

is a solution of (I ) ,  then so is 

This procedure results in extension of the data, since every computed flow produces two flows for 
use in the ensemble. In addition it can be shown that this type of extension imposes even and odd 
symmetry on the eigenfunctions.21,22 

The ensemble average of a collection of snapshots is defined as 

where M is the number of snapshots in the ensemble. The extended ensemble average for the 
pressure field is then 

Throughout the rest of this paper we focus on the fluctuating quantities of the flow variables; 
e.g. the fluctuating pressure field is given by 

(4) P " X )  = P(X) - md. 
However, for convenience we drop the primed notation. 
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4. KARHUNEN-LOEVE EXPANSION 

4.1. Formulation 

The Karhunen-Loeve expansion is based on representing a typical realization of a flow in 
terms of the eigenfunctions of the integral equation 

K i j ( X ,  X')UY)(X') = 2")Ui (X) ,  ( 5 )  

where summation and integration conventions are assumed. The two-point correlation tensor is 
defined by 

K i j ( x ,  x') = ( 4 i ( X ) 4 j ( x f ) ) ,  (6)  

where we have formed the concatenated variable 

4 = ( P U ,  P O ,  PI. (7) 

The kernel K given in (6) is symmetric and non-negative; thus we have orthogonal eigenfunctions 
and non-negative eigenvalues. The kernel is also degenerate, a fact which greatly simplifies the 
actual computation of (5). In fact, using symmetry considerations one can show that the 
dimension of the discrete eigenvector calculation is always M (not 2M) ,  the size of the unextended 
ensemble. In addition, the cost of the calculation increases only linearly with the number of flow 
variables concatenated in (7). 

Once we have computed the eigenfunctions, we can approximately reconstruct any member of 
the ensemble by an N-term expansion with 

where 

under the normal Euclidean inner product. When N = 2M this reconstruction is  exact, since in 
this case the expansion is equivalent to a linear change of basis. The error introduced when the 
series is truncated represents the true error only if the ensemble spans the set of all admissible 
solutions. Since we do not know in advance just when the ensemble will be large enough, this 
error estimate is in fact only a lower bound for the error, on average. However, an upper bound 
on the error can be obtained by considering the approximation of snapshots which satisfy the 
strobe condition but were not included in the ensemble used to compute the eigenfunctions. The 
difference between these two error estimates should diminish, and eventually go to zero, as the 
number of flows in the ensemble becomes large enough.22 Thus, to test the success of the method 
we will examine the efficiency of the expansion for both reconstructions and approximations of 
typical flows. 

We use the Euclidean distance between the exact flow field I) and its N-term expansion &", 

as a quantitative measure of the error of the approximation. In equation (10) 4 is understood to be 
the mean added flow, i.e. not the fluctuating field. 
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4.2.  Scuiing 

The eigenfunctions of (5) are sensitive to the scaling of the flow variables pu, pv and p .  This is 
especially of concern since the flow variables are in different units and have widely varying 
magnitudes. With this in mind we determine three scale factors which force the magnitude of the 
fluctuating variables to be, on average, O(1). For example 'we compute the pressure scale factor by 

where Nh = 120 and N ,  = 80 represent the horizontal aind vertical dimensions of the grid. 

5. RESULTS 

5.1. Ensemble averages und Juctuating quantities 

The ensemble averages of the components of 4 are computed over 130 realizations, including 
the extended data, and are shown in Figure 2. We see that the ensemble-averaged streamlines and 
pressure field have several interesting features. The instantaneous streamlines of the ensemble- 
averaged velocity fields are shown in Figure 2(a). We observe that there is a critical distance from 
the plate, on the vertical boundaries of the flow, above which a particle entering is unlikely to pass 
through the slot, the below which is generally does. We refer to this streamline originating at the 
critical distance as a separatrix. The ensemble-averaged pressure field is shown in Figure 2(b). As 
one would expect, the centre of interaction is a high-pressure region. The shocks have been 
smeared somewhat, though we still see a steep pressure gradient on the symmetrical edges of the 
average-sampled structure. 

The fluctuating components of the momentum densities and pressure field for the two sample 
flows shown in Figure 1 are computed according to equation (4) and shown in Figure 3. The 
figures are enlarged to show only the region of interaction, i.e. the middle 50% of the simulation, 
bounded on the left and right by the plates. Observe that the flows are very dissimilar and will 
provide a good comparison of the approximations carriled out in Section 5.4. For instance, the 

(4 
Figure 2(a) 



A PROPER ORTHOGONAL DECOMPOSITION 417 

Figure 2. (a) Instantaneous streamlines of ensemble-averaged velocity fields. (b) Ensemble-averaged pressure field. The 
extended ensemble size is 130 
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Figure 3. (a) Fluctuating momentum density field for Figure l(a). (b) Fluctuating pressure field for Figure I(b). 
(c) Fluctuating momentum density field for Figure l(c). (d) Fluctuating pressure field for Figure l(d). All the above plots, 

and those which follow, are blown up to show only the area between the plates 
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momentum density fields are composed of a complicated arrays of vortex-like structures, differing 
both in strength and location. Also we see that the fluctuating pressure fields have one common 
pronounced feature, i.e. shocks. This reflects the fact that the ensemble-averaged pressure field is 
smoother than an individual realization. Hence subtracting the mean field will not remove the 
shock structure. In addition, there are lobes of high pressure located roughly symmetrically at the 
end of each shock. 

5.2. Eigen values 

The eigenvalues (normalized by c;=MIA(i)) resulting from equation ( 5 )  are shown in Figure 4. 
A Karhunen-Loeve global estimate of the dimensionality for the set of snapshots is the value of 
the eigenvalue index i for which A(i)/Amax = 0.01. In the present case this is 23. 

It is useful to consider the fraction q N  of total energy contained, on average, in the expansion for 
a given number of terms, where 

The quantity q N  is plotted versus N in Figure 5. The quantity 1 - q N  corresponds to the mean 
square error of the expansion for snapshots belonging t o  the ensemble. The number of terms 
retained in an eigenfunction expansion depends largely on the degree of accuracy required. 
However, this decision should be made keeping the behaviour of the above two figures in mind. 
Specifically, we see that they can be viewed roughly as two piecewise linear segments which 
connect when the index is about 15-20. We see the same kind of behaviour when we approximate 
a realization from outside of the ensemble (see Figure 9). From this it is clear that there are two 
rates of convergence, each corresponding to one leg of the curve. Thus information is captured 
most rapidly until about 15-20 terms, after which the rate of convergence for both the 
reconstruction and approximation falls off. 
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Figure 4. Normalized eigenvalue R'"Z,L"' versus i 
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Figure 5. Fraction qs of total variance as a function of N 

5.3. Eigenflows 

Interpreting the eigenflows is feasible since we have knowledge of several flow variables. As 
mentioned previously, it should be kept in mind that the eigenflows are not solutions of the flow 
equation; in fact, they do not in general even satisfy the continuity equation (la). Hence, while we 
attribute physical meanings to them, they do not in fact represent physics per se. 

The first two components, i.e. the u- and u-components of momentum density, of the 
eigenfunction corresponding to the largest eigenvalue are shown in a momentum density vector 
plot in Figure 6(a). This eigenfunction, taken with the corresponding pressure component 
(Figure 6(b)), accounts for 37% of the statistical variance of the flow. It has even symmetry in the 
sense that pu(x, y) = p u ( - x ,  - y )  and pu(x, y) = pu( -x ,  -y). We can observe three large-scale 
features in the flow. There are a pair of vortices separated by a momentum flux through the centre 
of the two plates. Note that the direction of the momentum flux is along the shocks. The first 
pressure eigenfunction is odd, i.e. p ( x ,  y) = - p (  -x, - y )  has four large-scale structures. Two of 
the features represent the intensity of the shocks, and it is interesting to note that these intensities 
are, on average, uneven. The magnitude of the other two structures is about one-seventh of the 
two in the centre (they are not visible in the blown-up region shown). Here again, the pressure on 
the edge of the plates is seen to be uneven. 

The second eigenfunction, shown in Figure 7, represents 14% of the variance of the flow. The 
momentum density plot shows two vortex structures separated by momentum flux along the gap. 
We also see momentum flux along the plate in what are typically low-pressure regions of the flow. 
The corresponding pressure component of the eigenfunction has three extrema (as well as their 
corresponding odd counterparts), alternating in sign. 

Whereas the momentum density components of the first two eigenfunctions correspond to 
mass flux through or across the plate, the third eigenfunction represents vorticity in the centre of 
the slot (Figure 8). There is also a vortex of smaller radius on either side of the centre vortex. This 
eigenfunction represents 8% of the variance of the flow. 
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(b) 

Figure 8. (a) Momentum density components of third eigenflow. (b) Pressure component of third eigenflow 
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As the amount of variance associated with each eigenfunction decreases, we see an increasing 
number of vortices in each momentum density plot and an increased representation of smaller 
flow scales. The ninth eigenfunction has an interesting shear layer diagonal to the centre of the 
slot. By this stage each eigenfunction represents less than 2% of the variance of the flow. 

The higher-order pressure components of the eigenfunction are generally thin shock-like 
structures. It is apparent that they contribute to the resolution of the shock boundary and steep 
pressure gradients which occur at different locations in each realization. 

5.4. Reconstructions and approximations 

As discussed earlier, to test the success of the method we approximate two typical fluctuating 
flow fields chosen at random, both shown in Figure 3. As observed earlier, the large-scale 
structure of these fields is very different. We emphasize that the first realization (Figures 3(a) 
and 3(b)) is a member of the ensemble used in computing the basis set, while the second 
realization (Figures 3(c) and 3(d)) is not (Figure 9). 

After only 10 terms the large-scale structure of each realization has been remarkably well 
captured; see Figures 10-13. The pressure field approximations in Figures 11 and 13 show that 
the lobes and locations of the shocks are well resolved. However, the steep gradient of the shock 
has been smoothed somewhat in the approximation. Pictorially the momentum density approx- 
imations are uniformly accurate. The error E,, is 3.4% for the reconstruction shown in 
Figure 10(b) and 5.1% for the approximation shown in Figure 12(b). By retaining more terms 
in the expansion we increasingly resolve the smaller scales of the flow. It is evident that if the 
ensemble were large enough, i.e. every possible realization is linearly dependent on it, then we 
would be able to approximate any snapshot with arbitrary precision. 

The quantitative errors need more than a visual assessment to put them in perspective. One 
possible interpretation of the significance of the magnitude of EN is to consider the average 

Figure 9. The solid curve corresponds to the reconstruction error EN for the flow in Figures 3(a) and 3(b) 
curve is the approximation error for Figures 3(c) and 3(d) (it is not an ensemble member) 

The dashed 
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(b) 
Figure 10. Momentum density components of the approximation of Figure 3(a) for (a) 10 terms and (b) 20 terms 
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(b) 

Figure 11. Pressure field component of the approximation of Figure 3(b) for (a) 10 terms and (b) 20 terms 



426 M. KIRBY, J. P. BORIS AND L. SIROVICH 

. . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . l l , l / "  . .  . . 1 . . . . ' 1 .  . . . . . . .  

Figure 12. Momentum density components of the approximation of Figure 3(c) for (a) 10 terms and (b) 20 terms 
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(b) 
Figure 13. Pressure field component of the approximation of Figure 3(d) for (a) 10 terms and (b) 20 terms 

distance between the flow being approximated and the totality of flows in the ensemble. This error 
has been computed to be 1.41 (with respect to the fluctuating quantities). Thus, if we view the 
flows as points in a high-dimensional space and an N-term approximation as a ball of radius rN, 
we see that the space is well separated. Specifically, the distance to other points in the space is 
clustered around 1.41, while the distance to the approximated flow is already less than 0.44 (also 
with respect to fluctuating quantities) for just 10 terms. 

6. DISCUSSION 

One underlying theme of the procedure is that of data compression. The 20-term approximation, 
which captures the large-scale features of a flow, corresponds to a data compression factor of 
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480: 1. A more detailed 100-term approximation captures the smaller scales of the flow and 
corresponds to a compression ratio of about 100: 1. One might hope to do even better with a 
larger ensemble of flow realizations or a quantitative strobe condition using one or two global 
quantities to characterize the flow. 

A shortcoming of the above approach is that we have essentially eliminated time dependence in 
a flow with very interesting dynamics. This can be remedied using a simple extension of the above 
results. An obvious approach would be to strobe the flow at equally spaced intervals in time, and 
each snapshot would then contribute to a set of ensembles. It would then be possible to compute 
the eigenfunctions of each covariance matrix, i.e. each ensemble, thus producing a time-dependent 
representation of the eigenfunctions. However, it might be more advantageous to have each 
realization contribute to a set of ensembles through an appropriate weighting factor. This 
modification is presently being investigated. 
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